On the Fractal Dimension and Correlations in Percolation Theory

A. Kapitulnik, ${ }^{1,2}$ Y. Gefen, ${ }^{2}$ and A. Aharony ${ }^{3}$

Abstract

We discuss the fractal dimension of the infinite cluster at the percolation threshold. Using sealing theory and renormalization group we present an explicit expression for the two-point correlation function within percolation clusters. The fractal dimension is given by direct integration of this function.

KEY WORDS: Fractals; percolation.

1. INTRODUCTION

One of the most intensively studied random fractals is the percolating infinite cluster. ${ }^{(1-5,4)}$ Its popularity came from the fact that indeed percolation was shown to be a model which well describes inhomogeneous physical systems such as metal-insulator thin films, ${ }^{(6)}$ gels, ${ }^{(7)}$ or dilute magnetic systems. ${ }^{(8)}$

Much of the current interest in such systems concentrates on the influence of the geometrical structure on the physical properties in the vicinity of the percolation threshold, $p_{c} \cdot{ }^{(6-10)}$ As the concentration p approaches p_{c}, the pair connectedness length ξ diverges, $\xi \propto\left(p-p_{c}\right)^{-v}$. It is generally believed that on large length scales, $L \gg \xi$, the infinite cluster which appears for $p>p_{c}$ is homogeneous, with site (or bond) density $P_{\infty} \propto$ $\left(p-p_{c}\right)^{\beta} \propto \xi^{-\beta / v}$. This homogeneity is believed to disappear for shorter length scales, $L<\xi$. For these scales, the infinite cluster is argued to be selfsimilar, with a typical fractal dimensionality $D .{ }^{(1-7,11,12)}$ The value of D was discussed extensively in the literature. ${ }^{(1-7,11,12,13)}$ To define D, consider a point on the infinite cluster, and count the number $M(L)$ of points on the

[^0]same cluster within a volume L^{d} (of linear size L in dimensions) centered at that point. The last condition is essential if we want to fulfill the Hausdorf-Besikovitz ${ }^{(3)}$ definition of D. Self-similrity implies that ${ }^{(3,11,12)}$
\[

$$
\begin{equation*}
M(L) \propto L^{D}, \quad a \ll L \ll \xi \tag{1}
\end{equation*}
$$

\]

where a is a typical microscopic length.
For $L \gg \xi$, homogeneity implies that $M(L) \propto P_{\infty} L^{d} \propto \xi^{-\beta / \nu} \cdot L^{d}$. Assuming that ξ is the only relevant length in the problem, we may write $M(L, \xi)$ in the scaling form ${ }^{(11)}$

$$
\begin{equation*}
M(L, \xi)=\xi^{-\beta / v} \cdot L^{d} \cdot m\left(\frac{L}{\xi}\right) \tag{2}
\end{equation*}
$$

For $L<\xi \xi, M$ should become independent of ξ. Thus $m(x) \propto x^{-\beta / v}$ and $M(L) \propto L^{d-\beta / v}$, i.e.,

$$
\begin{equation*}
D=d-\beta / v \tag{3}
\end{equation*}
$$

This result also follows from finite size scaling at $p_{c},{ }^{(5)}$ and has been confirmed by independent measurements of D, β, and v for two-dimensional percolation systems. ${ }^{(11)}$

It is the aim of this paper to discuss these relations. In particular, Section 2 exhibits a general self-consistent calculation for $M(L)$, in the selfsimilar regime. This calculation yields the result

$$
\begin{equation*}
D=(\beta+\gamma) / v \tag{4}
\end{equation*}
$$

where γ describes the divergence of the mean cluster size. For $d<6$, the hyperscaling relation $d v=2 \beta+\gamma$ yields the equivalence of Eqs. (3) and (4). As we show in Section 3, this is no longer the case for $d>6$, when only (4) is correct, yielding $D \equiv 4$, nor at $d=6$, when logarithmic corrections are found.

The breakdown of hyperscaling results from the existence of a "dangerous irrelevant variable," and leads to a generalized scaling form replacing Eq. (2). These discussed in Section 4.

2. SELF-CONSISTENT DERIVATION OF D

Consider the conditional probability $\rho_{s}(r)$ that a site at a distance r from the origin belongs to a cluster of s sites, given that the origin belongs to
it. ${ }^{(14)}$ We can express the percolation connectedness correlation function, $G(r)$, as an average over $\rho_{s}(r)$,

$$
\begin{equation*}
G(r)=\sum_{s=1}^{\infty} s n_{s} \rho_{s}(r)+P_{\infty} \rho_{\infty}(r)-P_{\infty}^{2} \tag{5}
\end{equation*}
$$

where $s n_{s}$ is the probability that a site belongs to a finite cluster of s sites.
Let r_{s} be the typical linear size of a cluster of s sites. We expect $\rho_{s}(r)$ to decay exponentially for $r>r_{s}$. We shall thus use the approximate value $\rho_{s}(r) \simeq 0$ for $r>r_{s}$, and the sum in Eq. (5) will contain only sizes $s<s_{r}$, where s_{r} is the inverse function of r_{s}.

The function $s n_{s}$ is known ${ }^{(2)}$ to decay exponentially for $s>s_{\xi}$. In the same spirit as above, we approximate $s n_{s}$ by zero for $s>s_{q}$. The sum in Eq. (5) thus contains only terms with $r<r_{s}<\xi$. For such length scales we expect all the clusters to have the same self-similar structure. Therefore, we write $\rho_{s}(r)=\rho_{\infty}(r)$.

Combining all these simplifying assumptions, Eq. (5) now becomes ${ }^{(14)}$

$$
\begin{equation*}
\rho_{\infty}(r)=\left[G(r)+P_{\infty}^{2}\right] /\left[\sum_{s_{r}}^{s_{6}} s n_{s}+P_{\infty}\right] \tag{6}
\end{equation*}
$$

For $r \gg \xi$ one expects $G(r)$ to decay exponentially. The sum in the denominator of (6) is also vanishing, and we end up with $\rho_{\infty}(r) \simeq P_{\infty}$. This is the homogeneous regime.

For $r \lesssim \xi$, "strong" self-similarity ${ }^{(2)}$ implies that $s_{r} \propto r^{D}$. Using also $s n_{s} \propto s^{1-\tau}\left(s \leqq s_{\xi}\right),{ }^{(2)}$ the sum in the denominator becomes of order $s_{r}^{2-\tau} \propto$ $r^{-D(t-2)}$, which is expected to be large compared to P_{∞}. In the same range, we expect that $G(r) \propto r^{-(d-2+\eta)} \gg P_{\infty}^{2}$. Thus,

$$
\begin{equation*}
\rho_{\infty}(r) \propto r^{2-d-\eta+D(\tau-2)}, \quad r \ll \xi \tag{7}
\end{equation*}
$$

The "mass" on the infinite cluster within a volume L^{d} around the (occupied) origin is thus $(L<\xi)$

$$
\begin{equation*}
M(L)=\int^{L} d^{d} r \rho_{\infty}(r) \propto L^{2-\eta+D(\tau-2)} \tag{8}
\end{equation*}
$$

Comparison with Eq. (1) now yields

$$
\begin{equation*}
D=\frac{2-\eta}{3-\tau}=\frac{\gamma+\beta}{v} \tag{9}
\end{equation*}
$$

where on the right-hand side we used ${ }^{(2)} \gamma=(3-\tau) / \sigma, \sigma=1 /(\gamma+\beta)$ and $\gamma=$ $(2-\eta) v$. This is our Eq. (4), derived without any hyperscaling relations.

In the following sections we summarize existing and new expressions for $s n_{s}$ and for $G(r)$, and use them to derive $\rho_{\infty}(r)$ and $M(L)$ explicitly.

3. EXPLICIT RESULTS

The explicit calculations of $s n_{s}$ and of $G(r)$ are based on the mapping of the percolation problem on the limit $q \rightarrow 1$ of the q-state Potts model. The Hamiltonian of this model is written ${ }^{(15)}$

$$
\begin{align*}
\mathscr{R}= & -\frac{1}{4} \int\left(r_{0}+k^{2}\right) \sum_{i=1}^{q} Q_{i i}(\mathbf{k}) Q_{i i}(-\mathbf{k}) \\
& +w \iint \sum_{i} Q_{i i}(\mathbf{k}) Q_{i i}\left(\mathbf{k}^{\prime \prime}\right) Q_{i i}\left(-\mathbf{k}-\mathbf{k}^{\prime \prime}\right) \tag{10}
\end{align*}
$$

with r_{0} linear in $\left(p_{c}-p\right)$. The upper critical dimension of the model is $d_{u}=6 .{ }^{(16)}$ The renormalization group (RG) recursion relations are ${ }^{(17)}$

$$
\begin{align*}
\frac{d r}{d l} & =(2+\eta) r+O(w) \tag{11}\\
\frac{d w}{d l} & =\left(\frac{\varepsilon}{2}-\frac{3}{2}\right) w+O\left(w^{3}\right) \tag{12}
\end{align*}
$$

where $\varepsilon=6-d, K_{d}^{-1}=2^{d-1} \pi^{d / 2} \Gamma(d / 2)$ and

$$
\begin{equation*}
\eta=-48 K_{d} w^{2} \tag{13}
\end{equation*}
$$

For $d<6, w(l)$ flows to a fixed point, with $\left(w^{*}\right)^{2}=O(\varepsilon)$. One can then add an ordering "ghost" field h, derive an equation of state $Q(h),{ }^{(17)}$ and Laplace-transform it to obtain $s n_{s}$. Following Stephen, ${ }^{(18)}$ this yields

$$
\begin{align*}
s n_{s}= & \frac{1}{(48 \pi w c)^{1 / 2}} s^{-(3 / 2-\varepsilon / 14)} \exp \left(-\frac{|t|^{2} s}{48 w c}\right) \\
& \times\left[1 \pm \frac{1}{7} \varepsilon\left(\frac{\pi|t|^{2} s}{48 w c}\right)^{1 / 2}\right]+O\left(\varepsilon^{2}\right), \quad d<6 \tag{14}
\end{align*}
$$

where $t=\left(p_{c}-p\right) / p_{c}$ and c is a constant.
For $d>6$ the behavior is characterized by the Gaussian fixed point, $r^{*}=w^{*}=0$, in the vicinity of which one has

$$
\begin{equation*}
r(l)=r(0) e^{2 l}, \quad w(l)=w(0) e^{(3-d / 2) l} \tag{15}
\end{equation*}
$$

Repeating the same calculation we rederive the mean field result ${ }^{(18)}$

$$
\begin{equation*}
s n_{s}=\frac{1}{(48 \pi w c)^{1 / 2}} s^{-3 / 2} \exp \left(-\frac{|t|^{2} s}{48 w c}\right), \quad d>6 \tag{16}
\end{equation*}
$$

At $d=6$ the flow to the Gaussian fixed point is slower, $w(l) \propto w(0) / \sqrt{l}$. This implies that $t(l)=t(0) e^{2 l} / l^{5 / 21}$, and introduces additional powers of l into various expressions. ${ }^{(17)}$ When $t(l)=O(1)$ these l 's are replaced by logarithmic factors, e.g., $\ln \left|t / t_{0}\right|$. Finally, the same calculation yields ${ }^{(19)}$

$$
\begin{equation*}
s n_{s} \propto w^{4 / 7}\left[\ln \frac{s\left|t_{0}\right|^{2}}{48 w c}\right]^{2 / 7} s^{-3 / 2} \exp \left(-\frac{|t|^{2} s}{48 w c}\right), \quad d=6 \tag{17}
\end{equation*}
$$

where t_{0} is a constant. This result for $s n_{s}$ is reported here for the first time.
We now turn to the calculation of $G(r)$. The Fourier transform of $G(r)$ has the scaling form ${ }^{(20)}$

$$
\begin{equation*}
\hat{G}(\mathbf{k}, r, w)=\exp \left[2 l-\int_{0}^{l} \eta\left(l^{\prime}\right) d l^{\prime}\right] G\left(e^{i} \mathbf{k}, r(l), w(l)\right) \tag{18}
\end{equation*}
$$

One may obtain \hat{G} by iterating the RG recursion relations until $t(l)+$ $e^{2 l} k^{2}=1$, and then using perturbation theory. ${ }^{(21)}$

At $p=p_{c}$, i.e., $t=0$, we indeed confirm that

$$
\begin{equation*}
\hat{G}(\mathbf{k}, 0, w)^{-1} \propto k^{2-\eta}, \quad d<6 \tag{19}
\end{equation*}
$$

with $\eta=-\varepsilon / 21$.
For $d>6$ one obtains the Gaussian result,

$$
\begin{equation*}
\hat{G}(\mathbf{k}, 0, w)^{-1}=k^{2}, \quad d>6 \tag{20}
\end{equation*}
$$

and at $d=6$ one has the new result

$$
\begin{equation*}
\hat{G}(\mathbf{k}, 0, w)^{-1} \propto k^{2}\left[\ln \left(k / k_{0}\right)\right]^{-1 / 21} \tag{21}
\end{equation*}
$$

Note that such logarithmic factors in \hat{G} are expected whenever η is of order ε !

We are now ready to combine $s n_{s}$ and $G(r)$ to derive $\rho_{\infty}(r)$. For $d<6$, at $t=0$, Eq. (14) is clearly of the form $s n_{s} \propto s^{1-\tau}$, with $\tau=5 / 2-\varepsilon / 14$. Similarly, $G(r)$ is the Fourier transform of Eq. (19), $G(r) \propto r^{-(d-2+\eta)}$. Substitution into Eq. (8) indeed confirms Eq. (1), with

$$
\begin{equation*}
D=4-\frac{10}{21} \varepsilon+O\left(\varepsilon^{2}\right) \tag{22}
\end{equation*}
$$

This also agrees with the hyperscaling result (3).

Table I. Results for $\rho_{\infty}(r)$ and $M(L)$

	Self-similar regime			Homogeneous regime		
	$d=6-\varepsilon$	$d=6$	$d>6$	$d=6-\varepsilon$	$d=6$	$d>6$
$\rho_{\infty}(r)$	$r^{-[2-(11 / 21) \epsilon\}}$	$w(\ln r)^{-10 / 21} r^{-2}$	$w r^{4-d}$	$\left.\xi^{-[2-(11 / 21) ~}\right)^{\text {l }}$	${ }^{-2}(\ln \xi$	$w^{-1} \xi^{-2}$
$M(L)$	$L^{4-(10 / 21) \varepsilon}$	$w(\ln L)^{-10 / 21} L^{4}$	$w L^{4}$		${ }^{d} \rho_{\infty}$	

For $d>6$, Eq. (15) shows that $w(l)$ decays to zero as $l \rightarrow \infty$. However, w appears in denominators of various expressions, e.g., Eq. (16). One can therefore not set $w=w^{*}=0$. Such variables are called "dangerously irrelevant." ${ }^{(22)}$ The calculation of Section 2 can still be repeated, if one substitutes $s_{r} \propto w^{x} r^{D}, M(L) \propto w^{x} L^{D}, s n_{s} \propto w^{-1 / 2} s^{-3 / 2}, G(r) \propto r^{-(d-2)}$. One then finds ${ }^{(14)} x=1$ and $D=4$ for all $d>6$. Clearly, this agrees with Eq. (4) (with $\beta=\gamma=2 v=1$), but not with the hyperscaling result (3).

At $d=6$ we substitute $s_{r} \propto w^{x}(\ln r)^{y} r^{D}, \quad$ and identify $x=1$, $y=-10 / 21, d=4$.

In the homogeneous regime, $r \geqslant \xi$, we confirm explicitly that $\rho_{\infty}=P_{\infty}$. Our results are summarized in Table I.

4. MODIFIED SCALING FOR $\boldsymbol{d}>\boldsymbol{\gamma}$

For $d>6$, we concluded that one should keep track of explicit dependences on w. Thus, Eq. (2) must now be replaced by

$$
\begin{equation*}
M(L, \xi, w)=P_{\infty} L^{d} \tilde{m}\left(\frac{L}{\xi}, \xi^{3-d / 2} w\right) \tag{23}
\end{equation*}
$$

where the form $\xi^{3-d / 2} w$ results from Eq. (15) (used until $e^{l}=\xi$). Substituting $P_{\infty} \propto 1 / w \xi^{2}$, this becomes

$$
\begin{equation*}
M(L, \xi, w)=\frac{L^{d}}{w \xi^{2}} \tilde{m}\left(\frac{L}{\xi}, \xi^{3-d / 2} w\right) \tag{24}
\end{equation*}
$$

The function \tilde{m} depends singularly on its second variable: when $L \ll \xi$, $\tilde{m}(x, y) \propto x^{4-d} y^{2}$, yielding $M \propto w L^{4}$ as required.

One may interpret the additional variable in Eq. (24) as introducing a new length, $L_{w}=w^{2 /(d-6)}$. This length may be associated with the size of "blobs" of bonds on the infinite cluster, ${ }^{(4)}$ since w is associated with the probability of three-bond vertices. ${ }^{(14)}$ The behavior of M now depends on both L / ξ and ξ / L_{w}.

For $d<6$, the crossover from the homogeneous to the self-similar regime occurs at $L \sim \xi$. For $d>6$, the appearance of L_{w} defines a series of crossover lengths, ${ }^{(14)}$

$$
\begin{equation*}
L_{k}=\left(L_{w}^{d-6} \xi^{2 k}\right)^{1 /(d-6+2 k)} \tag{25}
\end{equation*}
$$

The two terms in the numerator of Eq. (6) become comparable at L_{2}, the two limiting behaviors of $M(L)$ become comparable at L_{1} and those of $g(L)$ where g is the conductance at scale $L^{(14,19)}$ become comparable at L_{3}. There probably exists a range of length scales, below ξ, through which various physical quantities cross over from their self-similar to their homogeneous behavior. Clearly, all the physical properties scale according to our self-similar predictions (e.g., $M \propto w L^{4}, g \propto L^{-2}$) for $L<L_{1} \propto$ $\xi^{2 /(d-4)}$, and according to the homogeneous ones for $L>\xi$. It is not yet clear to us whether the range $L_{1}<L<\xi$ represents a third scaling regime, or whether there is a separate crossover for each property. One would also like to obtain a geometrical interpretation of the lengths L_{k}.

For $d=6$, the two limiting expressions become comparable at

$$
\begin{equation*}
L_{0} \simeq w \xi(\ln \xi)^{-1 / 2}<\xi \tag{26}
\end{equation*}
$$

In this case, the second argument in Eq. (23) is replaced by $w / \ln \xi$ (or by $w / \ln L$), and the simple scaling form (2) is again violated.

NOTE ADDED IN PROOF

For $d<8$, finite $\left(p-p_{c}\right)<0$, and sufficiently large n one expects a crossover from Eq. (16) to the distribution function of lattice animals [A. B. Harris and T. C. Lubensky, Phys. Rev. B 24:2656 (1981)]. This should not affect the scaling properties of averages of powers of n calculated with (16), nor our results at $p=p_{c}$. We are grateful to A. B. Harris for discussions of this point.

ACKNOWLEDGMENTS

We enjoyed discussions and collaboration with D. Stauffer. This paper was supported by a grant form the U.S.-Israel Binational Science Foundation (BSF).

REFERENCES

1. G. Deutscher, R. Zallen, and J. Adler, ed., Percolation, Structures and Processes, Vol. 5, Ann. Israel Phys. Soc., 1983.
2. D. Stauffer, Phys. Rep. 54:1 (1979).
3. B. B. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977); The Fractal Geometry of Nature (Freeman, San Francisco, 1983).
4. H. E. Stanley, in Proceedings of the International Conference on Disordered Systems and Localization, C. Di Castro, ed. (Springer-Verlag, Berlin, 1981); H. E. Stanley and A. Coniglio, in Percolation, Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds., Ann. Israel Phys. Soc., Vol. 5, 1983.
5. S. Kirkpatrick, in Les Houche Summer School on Ill-condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979).
6. A. Kapitulnik and G. Deutscher, J. Stat. Phys., this issue; see also G. Deutscher, A. Kapitulnik, and M. L. Rappaport, in Percolation, Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds., Ann. Israel Phys. Soc., Vol. 5, 1983.
7. D. Stauffer, A. Coniglio, and M. Adam, Adv. Polymer Sci. 44:103 (1982).
8. A. Aharony, Y. Gefen, and Y. Kantor, J. Stat. Phys. 36:795 (1984).
9. A. Kapitulnik and G. Deutscher, Phys. Rev. Lett. 49:1444 (1982).
10. A. Palevski, M. L. Rapport, A. Kapitulnik, A. Fried, and G. Deutscher, J. Phys. (Paris) Lett. $45: L 367$ (1984).
11. A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer, J. Phys. A 16:L269 (1983).
12. Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick, Phys. Rev. Lett. 47:1771 (1981).
13. D. Stauffer, Z. Phys. B 37:89 (1980).
14. A. Aharony, Y. Gefen, and A. Kapitulnik, J. Phys. A 17:L197 (1984).
15. R. G. Priest and T. C. Lubensky, Phys. Rev, B 13:4159 (1976); Phys. Rev. B 14:5125 (1976).
16. G. Toulouse, Nuovo Cimento B23:234 (1974).
17. A. Aharony, Phys. Rev. B 22:400 (1980).
18. M. J. Stephen, Phys. Rev, B 15:5674 (1977).
19. A. Kapitulnik, Y. Gefen, and A. Aharony, Correlations and diffusion near $d=6$ in percolation, to be published.
20. K. G. Wilson and J. Kogut, Phys. Rep. 12C:75 (1974).
21. D. R. Nelson, Phys. Rev. B 14:1123 (1976).
22. M. E. Fisher, in Renormalization Group in Critical Phenomena and Quantum Field Theory: Proc. of a Conf., ed. J. D. Gunton and M. S. Green, eds., Temple University, 1973, p. 65.

[^0]: ${ }^{1}$ Institute for Polymers and Organic Solids, University of California at Santa Barbara, California 93106.
 ${ }^{2}$ Institute for Theoretical Physics, University of California at Santa Barbara, California 93106.
 ${ }^{3}$ Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 Israel.
 ${ }^{4}$ See especially Ref. 1 for a discussion of the general aspects of percolation.

