On the Fractal Dimension and Correlations in Percolation Theory

A. Kapitulnik,^{1,2} Y. Gefen,² and A. Aharony³

We discuss the fractal dimension of the infinite cluster at the percolation threshold. Using sealing theory and renormalization group we present an explicit expression for the two-point correlation function within percolation clusters. The fractal dimension is given by direct integration of this function.

KEY WORDS: Fractals; percolation.

1. INTRODUCTION

One of the most intensively studied random fractals is the *percolating infinite* cluster.^(1-5,4) Its popularity came from the fact that indeed percolation was shown to be a model which well describes inhomogeneous physical systems such as metal-insulator thin films,⁽⁶⁾ gels,⁽⁷⁾ or dilute magnetic systems.⁽⁸⁾</sup>

Much of the current interest in such systems concentrates on the influence of the geometrical structure on the physical properties in the vicinity of the percolation threshold, p_c .⁽⁶⁻¹⁰⁾ As the concentration p approaches p_c , the pair connectedness length ξ diverges, $\xi \propto (p - p_c)^{-\nu}$. It is generally believed that on large length scales, $L \gg \xi$, the infinite cluster which appears for $p > p_c$ is homogeneous, with site (or bond) density $P_{\infty} \propto (p - p_c)^{\beta} \propto \xi^{-\beta/\nu}$. This homogeneity is believed to disappear for shorter length scales, $L < \xi$. For these scales, the infinite cluster is argued to be *self-similar*, with a typical *fractal dimensionality* D.^(1-7,11,12) The value of D was discussed extensively in the literature.^(1-7,11,12,13) To define D, consider a point on the infinite cluster, and count the number M(L) of points on the

¹ Institute for Polymers and Organic Solids, University of California at Santa Barbara, California 93106.

² Institute for Theoretical Physics, University of California at Santa Barbara, California 93106.

³ Department of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 Israel.

⁴ See especially Ref. 1 for a discussion of the general aspects of percolation.

same cluster within a volume L^d (of linear size L in d dimensions) centered at that point. The last condition is essential if we want to fulfill the Hausdorf-Besikovitz⁽³⁾ definition of D. Self-similrity implies that^(3,11,12)

$$M(L) \propto L^{D}, \qquad a \ll L \ll \xi \tag{1}$$

where a is a typical microscopic length.

For $L \ge \xi$, homogeneity implies that $M(L) \propto P_{\infty}L^d \propto \xi^{-\beta/\nu} \cdot L^d$. Assuming that ξ is the only relevant length in the problem, we may write $M(L,\xi)$ in the scaling form⁽¹¹⁾

$$M(L, \xi) = \xi^{-\beta/\nu} \cdot L^{d} \cdot m\left(\frac{L}{\xi}\right)$$
(2)

For $L \ll \xi$, *M* should become independent of ξ . Thus $m(x) \propto x^{-\beta/\nu}$ and $M(L) \propto L^{d-\beta/\nu}$, i.e.,

$$D = d - \beta/\nu \tag{3}$$

This result also follows from finite size scaling at p_c ,⁽⁵⁾ and has been confirmed by independent measurements of D, β , and v for two-dimensional percolation systems.⁽¹¹⁾

It is the aim of this paper to discuss these relations. In particular, Section 2 exhibits a general self-consistent calculation for M(L), in the selfsimilar regime. This calculation yields the result

$$D = (\beta + \gamma)/\nu \tag{4}$$

where γ describes the divergence of the mean cluster size. For d < 6, the hyperscaling relation $d\nu = 2\beta + \gamma$ yields the equivalence of Eqs. (3) and (4). As we show in Section 3, this is no longer the case for d > 6, when only (4) is correct, yielding $D \equiv 4$, nor at d = 6, when logarithmic corrections are found.

The breakdown of hyperscaling results from the existence of a "dangerous irrelevant variable," and leads to a generalized scaling form replacing Eq. (2). These discussed in Section 4.

2. SELF-CONSISTENT DERIVATION OF D

Consider the conditional probability $\rho_s(r)$ that a site at a distance r from the origin belongs to a cluster of s sites, given that the origin belongs to

it.⁽¹⁴⁾ We can express the percolation connectedness correlation function, G(r), as an average over $\rho_s(r)$,

$$G(r) = \sum_{s=1}^{\infty} sn_s \rho_s(r) + P_{\infty} \rho_{\infty}(r) - P_{\infty}^2$$
(5)

where sn_s is the probability that a site belongs to a finite cluster of s sites.

Let r_s be the typical linear size of a cluster of s sites. We expect $\rho_s(r)$ to decay exponentially for $r > r_s$. We shall thus use the approximate value $\rho_s(r) \simeq 0$ for $r > r_s$, and the sum in Eq. (5) will contain only sizes $s < s_r$, where s_r is the inverse function of r_s .

The function sn_s is known⁽²⁾ to decay exponentially for $s > s_{\ell}$. In the same spirit as above, we approximate sn_s by zero for $s > s_{\ell}$. The sum in Eq. (5) thus contains only terms with $r < r_s < \xi$. For such length scales we expect all the clusters to have the same self-similar structure. Therefore, we write $\rho_s(r) = \rho_{\infty}(r)$.

Combining all these simplifying assumptions, Eq. (5) now becomes⁽¹⁴⁾

$$\rho_{\infty}(r) = \left[G(r) + P_{\infty}^{2}\right] \left/ \left[\sum_{s_{r}}^{s_{\ell}} sn_{s} + P_{\infty}\right] \right.$$
(6)

For $r \ge \xi$ one expects G(r) to decay exponentially. The sum in the denominator of (6) is also vanishing, and we end up with $\rho_{\infty}(r) \simeq P_{\infty}$. This is the *homogeneous* regime.

For $r \leq \xi$, "strong" self-similarity⁽²⁾ implies that $s_r \propto r^D$. Using also $sn_s \propto s^{1-\tau}$ ($s \leq s_{\xi}$),⁽²⁾ the sum in the denominator becomes of order $s_r^{2-\tau} \propto r^{-D(\tau-2)}$, which is expected to be large compared to P_{∞} . In the same range, we expect that $G(r) \propto r^{-(d-2+\eta)} \gg P_{\infty}^2$. Thus,

$$\rho_{\infty}(r) \propto r^{2-d-\eta+\mathcal{D}(\tau-2)}, \qquad r \ll \xi \tag{7}$$

The "mass" on the infinite cluster within a volume L^d around the (occupied) origin is thus $(L < \xi)$

$$M(L) = \int^{L} d^{d}r \,\rho_{\infty}(r) \propto L^{2-\eta + D(\tau - 2)} \tag{8}$$

Comparison with Eq. (1) now yields

$$D = \frac{2 - \eta}{3 - \tau} = \frac{\gamma + \beta}{\nu} \tag{9}$$

where on the right-hand side we used⁽²⁾ $\gamma = (3 - \tau)/\sigma$, $\sigma = 1/(\gamma + \beta)$ and $\gamma = (2 - \eta)v$. This is our Eq. (4), derived without any hyperscaling relations.

In the following sections we summarize existing and new expressions for sn_s and for G(r), and use them to derive $\rho_{\infty}(r)$ and M(L) explicitly.

3. EXPLICIT RESULTS

The explicit calculations of sn_s and of G(r) are based on the mapping of the percolation problem on the limit $q \rightarrow 1$ of the q-state Potts model. The Hamiltonian of this model is written⁽¹⁵⁾

$$\mathscr{H} = -\frac{1}{4} \int (r_0 + k^2) \sum_{i=1}^q Q_{ii}(\mathbf{k}) Q_{ii}(-\mathbf{k}) + w \iint \sum_i Q_{ii}(\mathbf{k}) Q_{ii}(\mathbf{k}'') Q_{ii}(-\mathbf{k} - \mathbf{k}''), \qquad (10)$$

with r_0 linear in $(p_c - p)$. The upper critical dimension of the model is $d_u = 6$.⁽¹⁶⁾ The renormalization group (RG) recursion relations are⁽¹⁷⁾

$$\frac{dr}{dl} = (2+\eta)r + O(w) \tag{11}$$

$$\frac{dw}{dl} = \left(\frac{\varepsilon}{2} - \frac{3}{2}\right)w + O(w^3)$$
(12)

where $\varepsilon = 6 - d$, $K_d^{-1} = 2^{d-1} \pi^{d/2} \Gamma(d/2)$ and

$$\eta = -48K_d w^2 \tag{13}$$

For d < 6, w(l) flows to a fixed point, with $(w^*)^2 = O(\varepsilon)$. One can then add an ordering "ghost" field *h*, derive an equation of state Q(h),⁽¹⁷⁾ and Laplace-transform it to obtain sn_s . Following Stephen,⁽¹⁸⁾ this yields

$$sn_{s} = \frac{1}{(48\pi wc)^{1/2}} s^{-(3/2 - \varepsilon/14)} \exp\left(-\frac{|t|^{2}s}{48wc}\right) \\ \times \left[1 \pm \frac{1}{7} \varepsilon \left(\frac{\pi |t|^{2}s}{48wc}\right)^{1/2}\right] + O(\varepsilon^{2}), \quad d < 6$$
(14)

where $t = (p_c - p)/p_c$ and c is a constant.

For d > 6 the behavior is characterized by the Gaussian fixed point, $r^* = w^* = 0$, in the vicinity of which one has

$$r(l) = r(0)e^{2l}, \qquad w(l) = w(0)e^{(3-d/2)l}$$
 (15)

On the Fractal Dimension and Correlations in Percolation Theory

Repeating the same calculation we rederive the mean field result⁽¹⁸⁾

$$sn_s = \frac{1}{(48\pi wc)^{1/2}} s^{-3/2} \exp\left(-\frac{|t|^2 s}{48wc}\right), \qquad d > 6$$
(16)

At d = 6 the flow to the Gaussian fixed point is slower, $w(l) \propto w(0)/\sqrt{l}$. This implies that $t(l) = t(0)e^{2l}/l^{5/21}$, and introduces additional powers of l into various expressions.⁽¹⁷⁾ When t(l) = O(1) these *l*'s are replaced by logarithmic factors, e.g., $\ln |t/t_0|$. Finally, the same calculation yields⁽¹⁹⁾

$$sn_s \propto w^{4/7} \left[\ln \frac{s |t_0|^2}{48wc} \right]^{2/7} s^{-3/2} \exp\left(-\frac{|t|^2 s}{48wc}\right), \qquad d = 6$$
 (17)

where t_0 is a constant. This result for sn_s is reported here for the first time.

We now turn to the calculation of G(r). The Fourier transform of G(r) has the scaling form⁽²⁰⁾

$$\hat{G}(\mathbf{k}, r, w) = \exp\left[2l - \int_0^l \eta(l') \, dl'\right] G(e^l \mathbf{k}, r(l), w(l)) \tag{18}$$

One may obtain \hat{G} by iterating the RG recursion relations until $t(l) + e^{2l}k^2 = 1$, and then using perturbation theory.⁽²¹⁾

At $p = p_c$, i.e., t = 0, we indeed confirm that

$$\hat{G}(\mathbf{k}, 0, w)^{-1} \propto k^{2-\eta}, \quad d < 6$$
 (19)

with $\eta = -\varepsilon/21$.

For d > 6 one obtains the Gaussian result,

$$\hat{G}(\mathbf{k}, 0, w)^{-1} = k^2, \qquad d > 6$$
 (20)

and at d = 6 one has the new result

$$\hat{G}(\mathbf{k}, 0, w)^{-1} \propto k^2 [\ln(k/k_0)]^{-1/21}$$
 (21)

Note that such logarithmic factors in \hat{G} are expected whenever η is of order ε !

We are now ready to combine sn_s and G(r) to derive $\rho_{\infty}(r)$. For d < 6, at t = 0, Eq. (14) is clearly of the form $sn_s \propto s^{1-\tau}$, with $\tau = 5/2 - \varepsilon/14$. Similarly, G(r) is the Fourier transform of Eq. (19), $G(r) \propto r^{-(d-2+\eta)}$. Substitution into Eq. (8) indeed confirms Eq. (1), with

$$D = 4 - \frac{10}{21}\varepsilon + O(\varepsilon^2)$$
(22)

This also agrees with the hyperscaling result (3).

	Self-similar regime			Homogeneous regime		
	$d=6-\varepsilon$	d = 6	<i>d</i> > 6	$d=6-\varepsilon$	d = 6	<i>d</i> > 6
$\rho_{\infty}(r)$	$r^{-[2-(11/21)\varepsilon]}$	$w(\ln r)^{-10/21}r^{-2}$	wr ^{4-d}	$\xi^{-[2-(11/21)_{\mathcal{B}}]}$	$w^{-1}\xi^{-2}(\ln\xi)^{11/21}$	$w^{-1}\xi^{-2}$
M(L)	$L^{4-(10/21)\varepsilon}$	$w(\ln L)^{-10/21}L^4$	wL ⁴		$L^d ho_\infty$	

Table I. Results for $\rho_{\infty}(r)$ and M(L)

For d > 6, Eq. (15) shows that w(l) decays to zero as $l \to \infty$. However, w appears in denominators of various expressions, e.g., Eq. (16). One can therefore not set $w = w^* = 0$. Such variables are called "dangerously irrelevant."⁽²²⁾ The calculation of Section 2 can still be repeated, if one substitutes $s_r \propto w^x r^D$, $M(L) \propto w^x L^D$, $sn_s \propto w^{-1/2} s^{-3/2}$, $G(r) \propto r^{-(d-2)}$. One then finds⁽¹⁴⁾ x = 1 and D = 4 for all d > 6. Clearly, this agrees with Eq. (4) (with $\beta = \gamma = 2\nu = 1$), but not with the hyperscaling result (3).

At d = 6 we substitute $s_r \propto w^x (\ln r)^y r^D$, and identify x = 1, y = -10/21, d = 4.

In the homogeneous regime, $r \ge \xi$, we confirm explicitly that $\rho_{\infty} = P_{\infty}$. Our results are summarized in Table I.

4. MODIFIED SCALING FOR d > 6

For d > 6, we concluded that one should keep track of explicit dependences on w. Thus, Eq. (2) must now be replaced by

$$M(L,\xi,w) = P_{\infty}L^{d}\tilde{m}\left(\frac{L}{\xi},\xi^{3-d/2}w\right)$$
(23)

where the form $\xi^{3-d/2}w$ results from Eq. (15) (used until $e^l = \xi$). Substituting $P_{\infty} \propto 1/w \xi^2$, this becomes

$$M(L,\xi,w) = \frac{L^d}{w\xi^2} \tilde{m}\left(\frac{L}{\xi},\xi^{3-d/2}w\right)$$
(24)

The function \tilde{m} depends singularly on its second variable: when $L \ll \xi$, $\tilde{m}(x, y) \propto x^{4-d} y^2$, yielding $M \propto wL^4$ as required.

One may interpret the additional variable in Eq. (24) as introducing a new length, $L_w = w^{2/(d-6)}$. This length may be associated with the size of "blobs" of bonds on the infinite cluster,⁽⁴⁾ since w is associated with the probability of three-bond vertices.⁽¹⁴⁾ The behavior of M now depends on both L/ξ and ξ/L_w .

On the Fractal Dimension and Correlations in Percolation Theory

For d < 6, the crossover from the homogeneous to the self-similar regime occurs at $L \sim \xi$. For d > 6, the appearance of L_w defines a series of crossover lengths,⁽¹⁴⁾

$$L_k = (L_w^{d-6}\xi^{2k})^{1/(d-6+2k)}$$
(25)

The two terms in the numerator of Eq. (6) become comparable at L_2 , the two limiting behaviors of M(L) become comparable at L_1 and those of g(L) where g is the conductance at scale $L^{(14,19)}$ become comparable at L_3 . There probably exists a range of length scales, below ξ , through which various physical quantities cross over from their self-similar to their homogeneous behavior. Clearly, all the physical properties scale according to our self-similar predictions (e.g., $M \propto wL^4$, $g \propto L^{-2}$) for $L < L_1 \propto \xi^{2/(d-4)}$, and according to the homogeneous ones for $L > \xi$. It is not yet clear to us whether the range $L_1 < L < \xi$ represents a third scaling regime, or whether there is a separate crossover for each property. One would also like to obtain a geometrical interpretation of the lengths L_k .

For d = 6, the two limiting expressions become comparable at

$$L_0 \simeq w\xi (\ln \xi)^{-1/2} < \xi$$
 (26)

In this case, the second argument in Eq. (23) is replaced by $w/\ln \xi$ (or by $w/\ln L$), and the simple scaling form (2) is again violated.

NOTE ADDED IN PROOF

For d < 8, finite $(p - p_c) < 0$, and sufficiently large *n* one expects a crossover from Eq. (16) to the distribution function of lattice animals [A. B. Harris and T. C. Lubensky, *Phys. Rev. B* 24:2656 (1981)]. This should not affect the scaling properties of averages of powers of *n* calculated with (16), nor our results at $p = p_c$. We are grateful to A. B. Harris for discussions of this point.

ACKNOWLEDGMENTS

We enjoyed discussions and collaboration with D. Stauffer. This paper was supported by a grant form the U.S.-Israel Binational Science Foundation (BSF).

REFERENCES

- 1. G. Deutscher, R. Zallen, and J. Adler, ed., Percolation, Structures and Processes, Vol. 5, Ann. Israel Phys. Soc., 1983.
- 2. D. Stauffer, Phys. Rep. 54:1 (1979).

Kapitulnik, Gefen, and Aharony

- 3. B. B. Mandelbrot, Fractals: Form, Chance and Dimension (Freeman, San Francisco, 1977); The Fractal Geometry of Nature (Freeman, San Francisco, 1983).
- 4. H. E. Stanley, in Proceedings of the International Conference on Disordered Systems and Localization, C. Di Castro, ed. (Springer-Verlag, Berlin, 1981); H. E. Stanley and A. Coniglio, in Percolation, Structures and Processes, G. Deutscher, R. Zallen, and J. Adler, eds., Ann. Israel Phys. Soc., Vol. 5, 1983.
- 5. S. Kirkpatrick, in Les Houche Summer School on Ill-condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1979).
- A. Kapitulnik and G. Deutscher, J. Stat. Phys., this issue; see also G. Deutscher, A. Kapitulnik, and M. L. Rappaport, in *Percolation, Structures and Processes*, G. Deutscher, R. Zallen, and J. Adler, eds., Ann. Israel Phys. Soc., Vol. 5, 1983.
- 7. D. Stauffer, A. Coniglio, and M. Adam, Adv. Polymer Sci. 44:103 (1982).
- 8. A. Aharony, Y. Gefen, and Y. Kantor, J. Stat. Phys. 36:795 (1984).
- 9. A. Kapitulnik and G. Deutscher, Phys. Rev. Lett. 49:1444 (1982).
- 10. A. Palevski, M. L. Rapport, A. Kapitulnik, A. Fried, and G. Deutscher, J. Phys. (Paris) Lett. 45:L367 (1984).
- 11. A. Kapitulnik, A. Aharony, G. Deutscher, and D. Stauffer, J. Phys. A 16:L269 (1983).
- 12. Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick, *Phys. Rev. Lett.* 47:1771 (1981).
- 13. D. Stauffer, Z. Phys. B 37:89 (1980).
- 14. A. Aharony, Y. Gefen, and A. Kapitulnik, J. Phys. A 17:L197 (1984).
- 15. R. G. Priest and T. C. Lubensky, Phys. Rev. B 13:4159 (1976); Phys. Rev. B 14:5125 (1976).
- 16. G. Toulouse, Nuovo Cimento B23:234 (1974).
- 17. A. Aharony, Phys. Rev. B 22:400 (1980).
- 18. M. J. Stephen, Phys. Rev. B 15:5674 (1977).
- 19. A. Kapitulnik, Y. Gefen, and A. Aharony, Correlations and diffusion near d = 6 in percolation, to be published.
- 20. K. G. Wilson and J. Kogut, Phys. Rep. 12C:75 (1974).
- 21. D. R. Nelson, Phys. Rev. B 14:1123 (1976).
- 22. M. E. Fisher, in *Renormalization Group in Critical Phenomena and Quantum Field Theory*: Proc. of a Conf., ed. J. D. Gunton and M. S. Green, eds., Temple University, 1973, p. 65.